Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477352

ABSTRACT

Alterations in the tumor suppressor ATRX are recurrently observed in mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs. This includes adipogenic pathways where ATRX loss induced expression of adipogenic transcription factors and enhanced adipogenic differentiation in response to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased chromatin accessibility and gains of active chromatin marks. We additionally observed depletion of H3K9me3 at transposable elements, which are derepressed including near mesenchymal genes where they could serve as regulatory elements. Finally, we demonstrated that loss of ATRX in a mesenchymal malignancy, undifferentiated pleomorphic sarcoma, results in similar epigenetic disruption and de-repression of transposable elements. Together, our results reveal a role for ATRX in maintaining epigenetic states and transcriptional repression in mesenchymal progenitors and tumor cells and in preventing aberrant differentiation in the progenitor context.

2.
Cancer Res Commun ; 3(10): 2118-2125, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37787759

ABSTRACT

The association between immune-related AEs (irAE) and outcome in patients with sarcoma is not known. We retrospectively reviewed a cohort of patients with advanced sarcoma treated with immune checkpoint blockade (ICB)-based therapy. Association of irAEs with survival was assessed using a Cox regression model that incorporated irAE occurrence as a time-dependent covariate. Tumor samples with available RNA sequencing data were stratified by presence of an irAE to identify patterns of differential gene expression. A total of 131 patients were included. Forty-two (32%) had at least one irAE of any grade and 16 (12%) had at least one grade ≥ 3 irAE. The most common irAEs were hypothyroidism (8.3%), arthralgias (5.3%), pneumonitis (4.6%), allergic reaction (3.8%), and elevated transaminases (3.8%). Median progression-free survival (PFS) and overall survival (OS) from the time of study entry were 11.4 [95% confidence interval (CI), 10.7-15.0) and 74.6 weeks (CI, 44.9-89.7), respectively. On Cox analysis adjusting for clinical covariates that were significant in the univariate setting, the HR for an irAE (HR, 0.662; CI, 0.421-1.041) approached, but did not reach statistical significance for PFS (P = 0.074). Patients had a significantly lower HR for OS (HR, 0.443; CI, 0.246-0.798; P = 0.007) compared with those without or before an irAE. Gene expression profiling on baseline tumor samples found that patients who had an irAE had higher numbers of tumor-infiltrating dendritic cells, CD8+ T cells, and regulatory T cells as well as upregulation of immune and inflammatory pathways. SIGNIFICANCE: irAE after ICB therapy was associated with an improved OS; it also approached statistical significance for improved PFS. Patients who had an irAE were more likely to have an inflamed tumor microenvironment at baseline.


Subject(s)
Nivolumab , Sarcoma , Humans , Nivolumab/adverse effects , Immune Checkpoint Inhibitors/adverse effects , Retrospective Studies , Progression-Free Survival , Sarcoma/drug therapy , Tumor Microenvironment
3.
bioRxiv ; 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37609273

ABSTRACT

Alterations in the tumor suppressor ATRX are recurrently observed in several cancer types including sarcomas, which are mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs. This includes adipogenic pathways where ATRX loss induced expression of adipogenic transcription factors (Pparγ and Cebpα) and enhanced adipogenic differentiation in response to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased chromatin accessibility and gains of active chromatin marks at putative enhancer elements and promoters. Finally, we observed depletion of H3K9me3 at transposable elements, which are derepressed including near mesenchymal genes where they could serve as regulatory elements. Our results demonstrate that ATRX functions to buffer against differentiation in mesenchymal progenitor cells, which has implications for understanding ATRX loss of function in sarcomas.

4.
Radiother Oncol ; 187: 109824, 2023 10.
Article in English | MEDLINE | ID: mdl-37532104

ABSTRACT

BACKGROUND/PURPOSE: Stereotactic body radiation therapy (SBRT) is standard for patients with inoperable early-stage NSCLC. We hypothesized that SBRT for sarcoma pulmonary metastases would achieve high rates of local control with acceptable toxicity and that patients with oligometastatic disease may achieve prolonged survival following SBRT. MATERIALS/METHODS: This retrospective review included consecutive patients at our institution treated with SBRT for sarcoma pulmonary metastases. Cumulative incidence of local failure (LF) was estimated using a competing risks framework. RESULTS: We identified 66 patients treated to 95 pulmonary metastases with SBRT. The median follow-up from the time of SBRT was 36 months (95% CI 34 - 53 months). The cumulative incidence of LF at 12 and 24 months was 3.1% (95% CI 0.9 - 10.6%) and 7.4% (95% CI 4.0% - 13.9%), respectively. The 12- and 24-month overall survival was 74% (95% CI 64 - 86%) and 49% (38 - 63%), respectively. Oligometastatic disease, intrathoracic only disease, and performance status were associated with improved survival on univariable analysis. Three patients had grade 2 pneumonitis, and one patient had grade 2 esophagitis. No patients had ≥ grade 3+ toxicities. CONCLUSION: To the best of our knowledge, this is the largest series of patients treated with SBRT for pulmonary sarcoma metastases. We observed that SBRT offers an effective alternative to surgical resection with excellent local control and low proportions of toxicity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Sarcoma , Humans , Treatment Outcome , Radiosurgery/adverse effects , Carcinoma, Non-Small-Cell Lung/radiotherapy , Retrospective Studies , Sarcoma/radiotherapy
5.
Clin Cancer Res ; 29(11): 2043-2051, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36971773

ABSTRACT

PURPOSE: Epacadostat, an indole 2,3 dioxygenase 1 (IDO1) inhibitor, proposed to shift the tumor microenvironment toward an immune-stimulated state, showed early promise in melanoma but has not been studied in sarcoma. This study combined epacadostat with pembrolizumab, which has modest activity in select sarcoma subtypes. PATIENTS AND METHODS: This phase II study enrolled patients with advanced sarcoma into five cohorts including (i) undifferentiated pleomorphic sarcoma (UPS)/myxofibrosarcoma, (ii) liposarcoma (LPS), (iii) leiomyosarcoma (LMS), (iv) vascular sarcoma, including angiosarcoma and epithelioid hemangioendothelioma (EHE), and (v) other subtypes. Patients received epacadostat 100 mg twice daily plus pembrolizumab at 200 mg/dose every 3 weeks. The primary endpoint was best objective response rate (ORR), defined as complete response (CR) and partial response (PR), at 24 weeks by RECIST v.1.1. RESULTS: Thirty patients were enrolled [60% male; median age 54 years (range, 24-78)]. The best ORR at 24 weeks was 3.3% [PR, n = 1 (leiomyosarcoma); two-sided 95% CI, 0.1%-17.2%]. The median PFS was 7.6 weeks (two-sided 95% CI, 6.9-26.7). Treatment was well tolerated. Grade 3 treatment-related adverse events occurred in 23% (n = 7) of patients. In paired pre- and post-treatment tumor samples, no association was found between treatment and PD-L1 or IDO1 tumor expression or IDO-pathway-related gene expression by RNA sequencing. No significant changes in serum tryptophan or kynurenine levels were observed after baseline. CONCLUSIONS: Combination epacadostat and pembrolizumab was well tolerated and showed limited antitumor activity in sarcoma. Correlative analyses suggested that inadequate IDO1 inhibition was achieved.


Subject(s)
Leiomyosarcoma , Sarcoma , Soft Tissue Neoplasms , Adult , Humans , Male , Middle Aged , Female , Leiomyosarcoma/drug therapy , Sarcoma/drug therapy , Sarcoma/genetics , Antibodies, Monoclonal, Humanized , Soft Tissue Neoplasms/drug therapy , Tumor Microenvironment
6.
Mod Pathol ; 35(12): 1900-1909, 2022 12.
Article in English | MEDLINE | ID: mdl-36088476

ABSTRACT

SMARCB1 biallelic inactivation resulting in SMARCB1/INI1 deficiency drives a wide range of malignancies, including many mesenchymal tumors. However, the specific types of SMARCB1 alterations and spectrum of cooperating mutations among various types of sarcomas has not been well investigated. We profiled SMARCB1 genetic alterations by targeted DNA sequencing and fluorescence in situ hybridization (FISH) in a large cohort of 118 soft tissue and bone tumors, including SMARCB1-deficient sarcomas (78, 66%): epithelioid sarcomas, epithelioid peripheral nerve sheath tumors, poorly differentiated chordomas, malignant rhabdoid tumors, and soft tissue myoepithelial tumors, as well as non-SMARCB1-deficient sarcomas (40, 34%) with various SMARCB1 genetic alterations (mutations, copy number alterations). SMARCB1 loss by immunohistochemistry was present in 94% SMARCB1 pathogenic cases. By combined sequencing and FISH assays, 80% of SMARCB1-deficient tumors harbored homozygous (biallelic) SMARCB1 loss, while 14% demonstrated heterozygous SMARCB1 loss-of-function (LOF) alterations, and 6% showed no demonstrable SMARCB1 alterations. FISH and sequencing were concordant in the ability to detect SMARCB1 loss in 48% of cases. Epithelioid sarcomas most commonly (75%) harbored homozygous deletions, while a subset showed focal intragenic deletions or LOF mutations (nonsense, frameshift). In contrast, most soft tissue myoepithelial tumors (83%) harbored SMARCB1 nonsense point mutations without copy number losses. Additionally, clinically significant, recurrent co-occurring genetic events were rare regardless of histotype. By sequencing, extended 22q copy number loss in genes flanking the SMARCB1 locus (22q11.23) occurred in one-third of epithelioid sarcomas and the majority of poorly differentiated chordomas. Poorly differentiated chordomas and soft tissue myoepithelial tumors showed significantly worse overall and disease-free survival compared to epithelioid sarcomas. Overall, SMARCB1 LOF alterations predominate and account for SMARCB1 protein loss in most cases: majority being biallelic but a subset were heterozygous. In contrast, SMARCB1 alterations of uncertain significance can be seen in diverse sarcomas types and does not indicate a SMARCB1-deficient entity.


Subject(s)
Chordoma , Myoepithelioma , Neoplasms, Connective and Soft Tissue , Rhabdoid Tumor , Sarcoma , Soft Tissue Neoplasms , Humans , SMARCB1 Protein/genetics , In Situ Hybridization, Fluorescence , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Rhabdoid Tumor/pathology , Sarcoma/pathology , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology
7.
Nat Commun ; 13(1): 3405, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705560

ABSTRACT

The genetic, biologic, and clinical heterogeneity of sarcomas poses a challenge for the identification of therapeutic targets, clinical research, and advancing patient care. Because there are > 100 sarcoma subtypes, in-depth genetic studies have focused on one or a few subtypes. Herein, we report a comparative genetic analysis of 2,138 sarcomas representing 45 pathological entities. This cohort is prospectively analyzed using targeted sequencing to characterize subtype-specific somatic alterations in targetable pathways, rates of whole genome doubling, mutational signatures, and subtype-agnostic genomic clusters. The most common alterations are in cell cycle control and TP53, receptor tyrosine kinases/PI3K/RAS, and epigenetic regulators. Subtype-specific associations include TERT amplification in intimal sarcoma and SWI/SNF alterations in uterine adenosarcoma. Tumor mutational burden, while low compared to other cancers, varies between and within subtypes. This resource will improve sarcoma models, motivate studies of subtype-specific alterations, and inform investigations of genetic factors and their correlations with treatment response.


Subject(s)
Bone Neoplasms , Osteosarcoma , Sarcoma , Soft Tissue Neoplasms , Genomics , Humans , Sarcoma/drug therapy , Sarcoma/therapy , Soft Tissue Neoplasms/genetics
8.
Clin Cancer Res ; 28(8): 1507-1517, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35110417

ABSTRACT

PURPOSE: This phase Ib trial was designed to evaluate the safety and early efficacy signal of the combination of imatinib and binimetinib in patients with imatinib-resistant advanced gastrointestinal stromal tumors (GISTs). PATIENTS AND METHODS: This trial used a standard 3 + 3 design to determine the recommended phase II dose (RP2D). Additional patients were enrolled on an expansion cohort at the RP2D enriching for succinate dehydrogenase (SDH)-deficient GISTs to explore potential efficacy. RESULTS: The trial enrolled nine patients in the dose-escalation cohort and 14 in the dose-expansion cohort including six with SDH-deficient GISTs. Imatinib 400 mg daily with binimetinib 45 mg twice daily was established as the RP2D. Dose-limiting toxicity (DLT) was asymptomatic grade 4 creatinine phosphokinase (CPK) elevation. The most common non-DLT grade 3/4 toxicity was asymptomatic CPK elevation (69.6%). Other common ≥grade 2 toxicities included peripheral edema (17.4%), acneiform rash (21.7%), anemia (30.4%), hypophosphatemia (39.1%), and aspartate aminotransferase (AST) increase (17.4%). Two serious adverse events occurred (grade 2 dropped head syndrome and grade 3 central retinal vein occlusion). No unexpected toxicities were observed. Limited clinical activity was observed in KIT-mutant GIST. For SDH-deficient GISTs, one of five had confirmed RECIST1.1 partial response (PR). The median progression-free survival (mPFS) in patients with SDH-deficient GIST was 45.1 months [95% confidence interval (CI), 15.8-not estimable (NE)]; the median overall survival (mOS) was not reached (95% CI, 31.6 months-NE). One patient with a refractory metastatic SDH-deficient GIST had an exceptional pathologic response and durable clinical benefit. CONCLUSIONS: The combination of imatinib and binimetinib is safe with manageable toxicity and has encouraging activity in SDH-deficient but not imatinib-refractory KIT/PDGFRA-mutant GISTs. The observed clinical benefits provide a motivation for a larger trial of the combination strategy in SDH-deficient GISTs.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Gastrointestinal Neoplasms , Gastrointestinal Stromal Tumors , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Benzimidazoles/therapeutic use , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/pathology , Humans , Imatinib Mesylate/therapeutic use
9.
J Clin Oncol ; 40(9): 997-1008, 2022 03 20.
Article in English | MEDLINE | ID: mdl-35041493

ABSTRACT

PURPOSE: Dual targeting of the gastrointestinal stromal tumor (GIST) lineage-specific master regulators, ETV1 and KIT, by MEK and KIT inhibitors were synergistic preclinically and may enhance clinical efficacy. This trial was designed to test the efficacy and safety of imatinib plus binimetinib in first-line treatment of GIST. METHODS: In this trial (NCT01991379), treatment-naive adult patients with confirmed advanced GISTs received imatinib (400 mg once daily) plus binimetinib (30 mg twice daily), 28-day cycles. The primary end point was RECIST1.1 best objective response rate (ORR; complete response plus partial response [PR]). The study was designed to detect a 20% improvement in the ORR over imatinib alone (unacceptable rate of 45%; acceptable rate of 65%), using an exact binomial test, one-sided type I error of 0.08 and type II error of 0.1, and a planned sample size of 44 patients. Confirmed PR or complete response in > 24 patients are considered positive. Secondary end points included Choi and European Organisation for Research and Treatment of Cancer Response Rate, progression-free survival (PFS), overall survival (OS), pathologic responses, and toxicity. RESULTS: Between September 15, 2014, and November 15, 2020, 29 of 42 evaluable patients with advanced GIST had confirmed RECIST1.1 PR. The best ORR was 69.0% (two-sided 95% CI, 52.9 to 82.4). Thirty-nine of 41 (95.1%) had Choi PR approximately 8 weeks. Median PFS was 29.9 months (95% CI, 24.2 to not estimable); median OS was not reached (95% CI, 50.4 to not estimable). Five of eight patients with locally advanced disease underwent surgery after treatment and achieved significant pathologic response (≥ 90% treatment effect). There were no unexpected toxicities. Grade 3 and 4 toxicity included asymptomatic creatinine phosphokinase elevation (79.1%), hypophosphatemia (14.0%), neutrophil decrease (9.3%), maculopapular rash (7.0%), and anemia (7.0%). CONCLUSION: The study met the primary end point. The combination of imatinib and binimetinib is effective with manageable toxicity and warrants further evaluation in direct comparison with imatinib in frontline treatment of GIST.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Gastrointestinal Stromal Tumors , Adult , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Benzimidazoles/therapeutic use , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/pathology , Humans , Imatinib Mesylate/therapeutic use , Treatment Outcome
10.
Clin Cancer Res ; 28(5): 939-947, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34965948

ABSTRACT

PURPOSE: Programmed cell death protein 1 (PD-1) blockade can mediate objective responses in advanced sarcomas, but their durability has not been established and it is unclear if hyperprogressive disease (HPD) occurs in sarcomas treated with PD-1 inhibitors. EXPERIMENTAL DESIGN: We pooled patients who were treated prospectively with nivolumab or pembrolizumab as monotherapy or with bempegaldesleukin, epacadostat, ipilimumab, or talimogene laherparepvec. We did a new independent assessment for HPD and analyzed clinical, pathologic, and genomic data from baseline tumor biopsies. Our primary endpoint was the incidence of HPD; secondary endpoints were clinical or genomic correlates of response or HPD. RESULTS: We treated 134 patients with advanced sarcoma from 2015 to 2019. Twenty-one patients (16%) had a complete or partial response (CR/PR), and 30% of responses were durable for over 2 years. Forty-eight (36%) patients had stable disease (SD), 45 (34%) had progressive disease without HPD (PD), and 15 (11%) had HPD. Five patients (4%) were not evaluable for HPD. The sarcoma subtypes, sites of metastasis, clinical course, and genomic alterations in patients with PD and HPD were similar, except HPD tumors were smaller at baseline. CONCLUSIONS: In patients with advanced sarcoma, PD-1 blockade can mediate durable responses. HPD occurs in sarcoma at an incidence that is similar to what has been reported in other solid tumors, but patients with HPD were clinically and biologically similar to those who had PD. Further research is required to establish whether HPD is a biologically distinct phenomenon and whether a theoretical risk of HPD should influence patient management.


Subject(s)
Melanoma , Oncolytic Virotherapy , Sarcoma , Disease Progression , Follow-Up Studies , Humans , Programmed Cell Death 1 Receptor , Sarcoma/drug therapy , Sarcoma/genetics
11.
Clin Cancer Res ; 28(1): 175-186, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34667024

ABSTRACT

PURPOSE: Dedifferentiated liposarcoma (DDLS), one of the most common and aggressive sarcomas, infrequently responds to chemotherapy. DDLS survival and growth depend on underexpression of C/EBPα, a tumor suppressor and transcriptional regulator controlling adipogenesis. We sought to screen and prioritize candidate drugs that increase C/EBPα expression and may therefore serve as differentiation-based therapies for DDLS. EXPERIMENTAL DESIGN: We screened known bioactive compounds for the ability to restore C/EBPα expression and inhibit proliferation selectively in two DDLS cell lines but not in normal adipose-derived stem cells (ASC). Selected hits' activity was validated, and the mechanism of the most potent, SN-38, was investigated. The in vivo efficacy of irinotecan, the prodrug of SN-38, was evaluated in DDLS xenograft models. RESULTS: Of 3,119 compounds, screen criteria were met by 19. Validation experiments confirmed the DDLS selectivity of deguelin, emetine, and SN-38 and showed that they induce apoptosis in DDLS cells. SN-38 had the lowest IC50 (approximately 10 nmol/L), and its pro-apoptotic effects were countered by knockdown of CEBPA but not of TP53. Irinotecan significantly inhibited tumor growth at well-tolerated doses, induced nuclear expression of C/EBPα, and inhibited HIF1α expression in DDLS patient-derived and cancer cell line xenograft models. In contrast, doxorubicin, the most common treatment for nonresectable DDLS, reduced tumor growth by 30% to 50% at a dose that caused weight loss. CONCLUSIONS: This high-content screen revealed potential treatments for DDLS. These include irinotecan, which induces apoptosis of DDLS cells in a C/EBPα-dependent, p53-independent manner, and should be clinically evaluated in patients with advanced DDLS.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha , CCAAT-Enhancer-Binding Proteins , Liposarcoma , Adipocytes/metabolism , CCAAT-Enhancer-Binding Protein-alpha/analysis , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Proteins/analysis , Genes, Tumor Suppressor , Humans , Liposarcoma/drug therapy , Liposarcoma/genetics , Liposarcoma/pathology , Stem Cells/metabolism
12.
Nat Chem Biol ; 17(4): 403-411, 2021 04.
Article in English | MEDLINE | ID: mdl-33649601

ABSTRACT

Whole-genome sequencing data mining efforts have revealed numerous histone mutations in a wide range of cancer types. These occur in all four core histones in both the tail and globular domains and remain largely uncharacterized. Here we used two high-throughput approaches, a DNA-barcoded mononucleosome library and a humanized yeast library, to profile the biochemical and cellular effects of these mutations. We identified cancer-associated mutations in the histone globular domains that enhance fundamental chromatin remodeling processes, histone exchange and nucleosome sliding, and are lethal in yeast. In mammalian cells, these mutations upregulate cancer-associated gene pathways and inhibit cellular differentiation by altering expression of lineage-specific transcription factors. This work represents a comprehensive functional analysis of the histone mutational landscape in human cancers and leads to a model in which histone mutations that perturb nucleosome remodeling may contribute to disease development and/or progression.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Histones/genetics , Neoplasms/genetics , Animals , Cell Differentiation/genetics , Chromatin/genetics , Chromatin Assembly and Disassembly/physiology , Gene Library , Humans , Mutation/genetics , Nucleosomes/genetics , Protein Binding , Protein Domains , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
13.
Nat Rev Cancer ; 20(10): 608-623, 2020 10.
Article in English | MEDLINE | ID: mdl-32782366

ABSTRACT

Epigenetic regulation is critical to physiological control of development, cell fate, cell proliferation, genomic integrity and, fundamentally, transcriptional regulation. This epigenetic control occurs at multiple levels including through DNA methylation, histone modification, nucleosome remodelling and modulation of the 3D chromatin structure. Alterations in genes that encode chromatin regulators are common among mesenchymal neoplasms, a collection of more than 160 tumour types including over 60 malignant variants (sarcomas) that have unique and varied genetic, biological and clinical characteristics. Herein, we review those sarcomas in which chromatin pathway alterations drive disease biology. Specifically, we emphasize examples of dysregulation of each level of epigenetic control though mechanisms that include alterations in metabolic enzymes that regulate DNA methylation and histone post-translational modifications, mutations in histone genes, subunit loss or fusions in chromatin remodelling and modifying complexes, and disruption of higher-order chromatin structure. Epigenetic mechanisms of tumorigenesis have been implicated in mesenchymal tumours ranging from chondroblastoma and giant cell tumour of bone to chondrosarcoma, malignant peripheral nerve sheath tumour, synovial sarcoma, epithelioid sarcoma and Ewing sarcoma - all diseases that present in a younger patient population than most cancers. Finally, we review current and potential future approaches for the development of sarcoma therapies based on this emerging understanding of chromatin dysregulation.


Subject(s)
Epigenesis, Genetic , Epigenomics , Sarcoma/genetics , Animals , Biomarkers, Tumor , Cell Transformation, Neoplastic/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , DNA Methylation , Epigenomics/methods , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Sarcoma/diagnosis , Sarcoma/therapy
14.
Nature ; 567(7749): 473-478, 2019 03.
Article in English | MEDLINE | ID: mdl-30894748

ABSTRACT

Mutations in epigenetic pathways are common oncogenic drivers. Histones, the fundamental substrates for chromatin-modifying and remodelling enzymes, are mutated in tumours including gliomas, sarcomas, head and neck cancers, and carcinosarcomas. Classical 'oncohistone' mutations occur in the N-terminal tail of histone H3 and affect the function of polycomb repressor complexes 1 and 2 (PRC1 and PRC2). However, the prevalence and function of histone mutations in other tumour contexts is unknown. Here we show that somatic histone mutations occur in approximately 4% (at a conservative estimate) of diverse tumour types and in crucial regions of histone proteins. Mutations occur in all four core histones, in both the N-terminal tails and globular histone fold domains, and at or near residues that contain important post-translational modifications. Many globular domain mutations are homologous to yeast mutants that abrogate the need for SWI/SNF function, occur in the key regulatory 'acidic patch' of histones H2A and H2B, or are predicted to disrupt the H2B-H4 interface. The histone mutation dataset and the hypotheses presented here on the effect of the mutations on important chromatin functions should serve as a resource and starting point for the chromatin and cancer biology fields in exploring an expanding role of histone mutations in cancer.


Subject(s)
Cell Transformation, Neoplastic/genetics , Histones/genetics , Mutation/genetics , Neoplasms/genetics , Histones/chemistry , Histones/metabolism , Humans , Lysine/genetics , Lysine/metabolism , Methylation , Neoplasms/pathology , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Domains/genetics , Protein Processing, Post-Translational
16.
ACS Chem Biol ; 12(1): 174-182, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28103683

ABSTRACT

The antifungal drug itraconazole was recently found to exhibit potent antiangiogenic activity and has since been repurposed as an investigational anticancer agent. Itraconazole has been shown to exert its antiangiogenic activity through inhibition of the mTOR signaling pathway, but the molecular mechanism of action was unknown. We recently identified the mitochondrial protein VDAC1 as a target of itraconazole and a mediator of its activation of AMPK, an upstream regulator of mTOR. However, VDAC1 could not account for the previously reported inhibition of cholesterol trafficking by itraconazole, which was also demonstrated to lead to mTOR inhibition. In this study, we demonstrate that cholesterol trafficking inhibition by itraconazole is due to direct inhibition of the lysosomal protein NPC1. We further map the binding site of itraconazole to the sterol-sensing domain of NPC1 using mutagenesis, competition with U18666A, and molecular docking. Finally, we demonstrate that simultaneous AMPK activation and cholesterol trafficking inhibition leads to synergistic inhibition of mTOR, endothelial cell proliferation, and angiogenesis.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antifungal Agents/pharmacology , Carrier Proteins/metabolism , Itraconazole/pharmacology , Membrane Glycoproteins/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Voltage-Dependent Anion Channel 1/metabolism , AMP-Activated Protein Kinases/metabolism , Biological Transport/drug effects , Cell Proliferation/drug effects , Cholesterol/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Intracellular Signaling Peptides and Proteins , Molecular Docking Simulation , Niemann-Pick C1 Protein , TOR Serine-Threonine Kinases/antagonists & inhibitors
17.
PLoS One ; 10(3): e0119279, 2015.
Article in English | MEDLINE | ID: mdl-25775018

ABSTRACT

Cyclosporin A (CSA) suppresses immune function by blocking the cyclophilin A and calcineurin/NFAT signaling pathways. In addition to immunosuppression, CSA has also been shown to have a wide range of effects in the cardiovascular system including disruption of heart valve development, smooth muscle cell proliferation, and angiogenesis inhibition. Circumstantial evidence has suggested that CSA might control Notch signaling which is also a potent regulator of cardiovascular function. Therefore, the goal of this project was to determine if CSA controls Notch and to dissect the molecular mechanism(s) by which CSA impacts cardiovascular homeostasis. We found that CSA blocked JAG1, but not Dll4 mediated Notch1 NICD cleavage in transfected 293T cells and decreased Notch signaling in zebrafish embryos. CSA suppression of Notch was linked to cyclophilin A but not calcineurin/NFAT inhibition since N-MeVal-4-CsA but not FK506 decreased Notch1 NICD cleavage. To examine the effect of CSA on vascular development and function, double transgenic Fli1-GFP/Gata1-RFP zebrafish embryos were treated with CSA and monitored for vasculogenesis, angiogenesis, and overall cardiovascular function. Vascular patterning was not obviously impacted by CSA treatment and contrary to the anti-angiogenic activity ascribed to CSA, angiogenic sprouting of ISV vessels was normal in CSA treated embryos. Most strikingly, CSA treated embryos exhibited a progressive decline in blood flow that was associated with eventual collapse of vascular luminal structures. Vascular collapse in zebrafish embryos was partially rescued by global Notch inhibition with DAPT suggesting that disruption of normal Notch signaling by CSA may be linked to vascular collapse. However, multiple signaling pathways likely cause the vascular collapse phenotype since both cyclophilin A and calcineurin/NFAT were required for normal vascular function. Collectively, these results show that CSA is a novel inhibitor of Notch signaling and vascular function in zebrafish embryos.


Subject(s)
Cyclosporine/pharmacology , Neovascularization, Physiologic/drug effects , Receptors, Notch/metabolism , Signal Transduction/drug effects , Zebrafish/embryology , Animals , Calcineurin/metabolism , Calcium-Binding Proteins/metabolism , Cyclophilin A/metabolism , Embryo, Nonmammalian/blood supply , Embryo, Nonmammalian/drug effects , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Membrane Proteins/metabolism , Serrate-Jagged Proteins , Zebrafish Proteins
18.
J Surg Case Rep ; 2014(10)2014 Oct 18.
Article in English | MEDLINE | ID: mdl-25326917

ABSTRACT

Traumatic ventricular septal defect (VSD) is a widely-recognized complication of both penetrating and blunt trauma. Most cases are repaired operatively without the long-term complications of pulmonary hypertension and heart failure that are associated with unrepaired congenital VSD in the pediatric population. To our knowledge, this is the first case report of a patient with a traumatic VSD who declined surgical repair at the time of injury and subsequently developed long-term complications of pulmonary hypertension and heart failure. With nearly 20 years of follow-up, this case demonstrates that the absence of surgical treatment in asymptomatic adult patients at the time of injury can lead to long-term complications associated with VSD. This case also shows that aggressive surgical treatment in patients with severe pulmonary vascular disease and heart failure secondary to traumatic VSD can be performed safely and should be considered in cases refractory to efficacious medical interventions.

19.
J Med Chem ; 56(10): 3996-4016, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23634668

ABSTRACT

Methionine aminopeptidases (MetAPs), which remove the initiator methionine from nascent peptides, are essential in all organisms. While MetAP2 has been demonstrated to be a therapeutic target for inhibiting angiogenesis in mammals, MetAP1 seems to be vital for cell proliferation. Our earlier efforts identified two structural classes of human MetAP1 (HsMetAP1)-selective inhibitors (1-4), but all of them failed to inhibit cellular HsMetAP1. Using Mn(II) or Zn(II) to activate HsMetAP1, we found that 1-4 could only effectively inhibit purified HsMetAP1 in the presence of physiologically unachievable concentrations of Co(II). In an effort to seek Co(II)-independent inhibitors, a novel structural class containing a 2-(pyridin-2-yl)quinazoline core has been discovered. Many compounds in this class potently and selectively inhibited HsMetAP1 without Co(II). Subsequently, we demonstrated that 11j, an auxiliary metal-dependent inhibitor, effectively inhibited HsMetAP1 in primary cells. This is the first report that an HsMetAP1-selective inhibitor is effective against its target in cells.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Pyridines/pharmacology , Quinazolines/pharmacology , Aminopeptidases/biosynthesis , Animals , Cell Proliferation/drug effects , Chelating Agents/pharmacology , Chromatography, Thin Layer , Cobalt/pharmacology , Crystallography, X-Ray , Down-Regulation/drug effects , Enzyme Activation/drug effects , HeLa Cells , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Indicators and Reagents , Manganese/pharmacology , Metals/chemistry , Methionine/metabolism , Mice , Models, Molecular , Pyridines/chemistry , Quinazolines/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology , Thymidine/metabolism , Transfection , Zinc/pharmacology
20.
J Biol Chem ; 286(51): 44045-44056, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22025615

ABSTRACT

Itraconazole is a safe and widely used antifungal drug that was recently found to possess potent antiangiogenic activity. Currently, there are four active clinical trials evaluating itraconazole as a cancer therapeutic. Tumor growth is dependent on angiogenesis, which is driven by the secretion of growth factors from the tumor itself. We report here that itraconazole significantly inhibited the binding of vascular endothelial growth factor (VEGF) to VEGF receptor 2 (VEGFR2) and that both VEGFR2 and an immediate downstream substrate, phospholipase C γ1, failed to become activated after VEGF stimulation. These effects were due to a defect in VEGFR2 trafficking, leading to a decrease in cell surface expression, and were associated with the accumulation of immature N-glycans on VEGFR2. Small molecule inducers of lysosomal cholesterol accumulation and mammalian target of rapamycin (mTOR) inhibition, two previously reported itraconazole activities, failed to recapitulate itraconazole's effects on VEGFR2 glycosylation and signaling. Likewise, glycosylation inhibitors did not alter cholesterol trafficking or inhibit mTOR. Repletion of cellular cholesterol levels, which was known to rescue the effects of itraconazole on mTOR and cholesterol trafficking, was also able to restore VEGFR2 glycosylation and signaling. This suggests that the new effects of itraconazole occur in parallel to those previously reported but are downstream of a common target. We also demonstrated that itraconazole globally reduced poly-N-acetyllactosamine and tetra-antennary complex N-glycans in endothelial cells and induced hypoglycosylation of the epidermal growth factor receptor in a renal cell carcinoma line, suggesting that itraconazole's effects extend beyond VEGFR2.


Subject(s)
Antifungal Agents/pharmacology , Endothelial Cells/cytology , Itraconazole/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Biotinylation , Cell Line , Cell Proliferation , Glycosylation , Humans , Models, Biological , Neovascularization, Pathologic , Polysaccharides/chemistry , Signal Transduction , Sterols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...